关于清新|联系我们
报名咨询热线:0371—63218905

快速成形与快速制模技术的发展

作者:admin 来源: 日期:2018-1-11 16:14:42 人气: 标签:快速成形 快速制模技术 发展
  快速成形与快速制模技术的发展   1、引言   21世纪是以知识经济和信息社会为特征的时代,制造业面临信息社会中瞬息万变的市场对小批量多种产品要求的严峻挑战。在制造业日趋国际化的状况下,缩短产品开发周期和减少开发新产品投资风险,成为企业赖以生存的关键。直接从计算机模型产生三维物体的快速成形技术,是由现代设计和现代制造技术迅速发展的需求应运而生的,它涉及机械工程、自动控制、激光、计算机、材料等多个学科,近年来,该技术迅速在工业造型、制造、建筑、艺术、医学、航空、航天、考古和影视等领域得到良好的应用。快速成形/快速制模/快速制造技术为企业提高竞争力提供了一种先进的手段。   快速成形技术(Papid prototyping,以下简称RP)自80年代问世以来,在成形系统、材料方面有了长足的进步,同时推动了快速制模(Rapid Tooling,以下简称RT)和快速制造(Rapid Manufacturing,以下简称RM)的发展,90年代中末期是RP技术蓬勃发展的阶段。我国的华中科技大学、清华大学、西安交通大学、北京隆源公司和南京航空航天大学等单位,于90年代初率先开发RP及相关技术的研究、开发、推广和应用。到1999年,国内已有数十台引进或国产RP系统在企业、高校、研究机构和快速成形服务中心运行。在国家科技部的领导和支持下,先后成立了近十家旨在推广应用RP技术的“快速原型制造技术生产力促进中心”,863/CIMS主题专家组还将快速成形技术纳入目标产品发展项目。此外,有相当一部分高校将RP技术列入了“211”规划。国内投入RP研究的单位逐年增加,RP市场初步形成。   2、快速成形技术发展简史   RP技术是一种用材料逐层或逐点堆积出制件的制造方法。分层制造三维物体的思想雏形,最早出现在制造技术并不发达的19世纪。早在1892年,Blanthre主张用分层方法制作三维地图模型。1979年东京大学的中川威雄教授,利用分层技术制造了金属冲裁模、成型模和注塑模。   光刻技术的发展对现代RP技术的出现起到了催化作用。   20世纪70年代末到80年代初期,美国3M公司的Alanj.Hebert(1978)、日本的小玉秀男(1980)、美国UVP公司的Charles W.Hull(1982)和日本的丸谷洋二(1983),在不同的地点各自独立地提出了RP概念,即利用连续层的选区固化产生三维实体的新思想。Charles W.Hull在UVP的继续支持下,完成了一个能自动建造零件的称之为SterolithographyApparatus(SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。   同年,Charles W.Hull和UVP的股东们一起建立了3D System公司;随后许多关于快速成形的概念和技术在3D System公司中发展成熟。与此同时,其它的成型原理及相应的成型机也相继开发成功。1984年Michael Feygin提出了分层实体制造(Laminatde Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys公司,1990年前后开发了第一台商业机型LOM—1015。1986年,美国Texas大学的研究生C.Deckaed提出了Selective Laser Sintering(SLS)的思想,稍后组建成DTM公司,于1992年开发了基于SLS的商业成型机(Sinterstation)ScottCrump在1988年提出了Fused Deposition Modeling(FDM)的思想,1992年开发了第一台商业机型3D-Modeler。自从20世纪80年代中期SLA光成型技术发展以来到90年代后期,出现了十几种不同的快速成形技术,除前述几种外,典型的还有,3DP、SDM、SGC等。目前,SLA、LOM、SLS和FDM四种技术比较成熟。   3、RP技术的新进展   3.1光固化成形(SLA)   该成形法是目前世界上研究最深入、技术最成熟、应用最广泛的一种快速成形方法。目前研究SLA方法的有3D System公司、EOS公司、F&S公司、CMET公司、D-MEC公司、 Teijin Seiki公司、 Mitsui Zosen公司、西安交通大学和华中科技大学等。美国3D System公司的SLA技术在国际市场上占的比例最大,其设备自1988年推出SLA-250机型以后,在技术上有了长足进步,近几年推出的SLA-3500和SLA-5000机型使用半导体激励的固体激光器,扫描速度分别达到2.54m/sec和5m/sec,成型层厚最小可达0.05mm,该公司于1999年推出的SLA-7000机型与SLA-5000机型相比,成型体积虽然大致相同,但其扫描速度却达9.52m/sec,平均成形速度提高了4倍,成形层厚最小可达0.025mm,精度提高了一倍。   SLA成型技术的材料主要有四大系列:Ciba公司生产的CibatoolSL系列, Dupont公司的 SOMOS 系列,Zeneca公司的Stereocol系列和RPC公司(瑞典)的RPCure系列。CibaoolSL系列有以下新品种:用于 SLA-3500的 CibaoolSL-5510,这种树脂可以达到较高的成形速度和较好的防潮 性能,还有较好的成形精度。CibaltooISC-5210主要用于要求防热、防湿的环境,如水下作业条件。SOMOS系列也有新品种SOMOS8120,该材料的性能类似于聚乙烯和聚丙烯,特别适合于制作功能零件,也有很好的防潮、防水性能。   日本方面打破了SLA技术使用紫外光源的常规,在日本化药公司开发新型光敏树脂的协作下,由DENKEN ENGINEERING公司和AUTOSTRADE公司率先使用680nm左右波长的半导体激光器作为光源,大大降低了SLA设备的价格。特别是AUTOSTRADE公司的EDARTS机型,采用一种光源从下部隔着一层玻璃往上照射的约束液面型结构,使得该设备价格降到了298万日元。西安交通大学推出了LPS和CPS系列SLA成型机和相应的光敏树脂。CPS成型机采用了紫外灯作为成型能源。   3.2叠层成形(LOM)   目前研究LOM工艺的有Helisys公司,华中科技大学、清华大学、 Kira公司、 Sparx公司和 Kinergy 公司。Helisys公司除原有的LPH、LPS和LPF三个系列纸材品种以外,还开发了塑料和复合材料品种。华中科技大学推出的HRP系列成型机和成型材料,具有较高的性能价格比。清华大学推出了SSM系列成型机及成型材料。   3.3选择性激光烧结成形(SLS)   研究SLS的有DTM公司、EOS公司、北京隆源公司、华中科技大学和南京航空航天大学等。DTM公司于1992年、1996年和1999年先后推出了Sinterstation2000、2500和2500Plus机型。其中2500Plus机型的造型体积比过去增加了10%,同时通过对加热系统的优化,减少了辅助时间,提高了造形速度。北京隆源公司推出了AFS-300成型机。华中科技大学开发出HRPS-1型成机,用于铸造中砂造型,HRPS-Ⅲ型成型机用于高分子粉末成形。在材料方面,DTM公司每年有数种新产品问世,其中DuraformGF材料生产的制作,精度更高,表面更光滑。最近开发的弹性聚合物Somos201材料,具有橡胶特性,并可耐热和抗化学腐蚀,用该材料造出了汽车上的蛇型管、密封垫和门封等防渗漏的柔性零件;用Rapidsteel2.o不锈钢粉制造的模具,可生产100,000件注塑件;Rapidtool2.0这种材料的收缩率只有0.2%,其制件可以达到较高的精度和表面光洁度,几乎不需要后续抛光工序。DTMPolycarbonate铜-尼龙混合粉末,主要用于制作小批量的注塑模。EOS公司发展了一种新的尼龙粉末材料PA3200GF,类似于DTM的DuraFormGF,用这种材料制作的零件精度和表面光洁度都较好。   3.4熔丝沉积成形(FDM)   研究FDM的主要有Stratasys公司和MedModeler 公司。Stratasys公司于1993年开发出第一台FDM-1650机型后,先后推出了FDM-2000、FDM-3000和FDM-8000机型。引人注目的是1998年Stratasys公司推出的FDM-Quantum机型,最大造型体积为600mm× 500mm×600mm。由于采用了挤出头磁浮定位(Magna Drive)系统,可在同一时间独立控制两个挤出头,因此其造型速度为过去的5倍。Stratasys公司1998年与MedModeler公司合作开发了专用于一些医院和医学研究单位的MedModeler机型,使用ABS材料,并于1999年推出可使用聚脂热塑性塑料的Genisys型改进机型-GenisysXs,造型体积达305mm ×203mm ×203mm。清华大学推出了MEM机型。   熔丝线材料主要是ABS、人造橡胶、铸蜡和聚脂热塑性塑料。1998年澳大利亚的Swinburm工业大学研究了一种金属-塑料复合材料丝。1999年Stratasys公司开发出水溶性支撑材料,有效地解决了复杂、小型孔中的支撑材料难除或无法去除的难题。

网站首页 | 留言咨询 | 关于清新 | 网站地图 | 联系我们 | 各省培训目录报名咨询热线 : 0371—63218905
郑州清新教育 版权所有  Copyright © 2006 - 2011 备案号:豫ICP备11011661号-2